
DSRL – Distributed Systems Research Laboratory

Technical University of Cluj-Napoca

2023

 Microservices Architecture

Data consistency techniques



DSRL – Distributed Systems Research Laboratory

Contents

• Introduction

• Microservice vs Monolith Architecture

• Advantages for using Microservices

• Disadvantages of using Microservices

• Achieving Data Consistency
• Direct Rest Calls

• Event-based Architecture

• Advanced Consistency Techniques



DSRL – Distributed Systems Research Laboratory

Introduction

• Microservice architecture is a variant of the Service-Oriented-Architecture

• Aims to decouple application functionality and map them to smaller 
applications (i.e. microservices) in order to decrease coupling, and allow fast 
changes, individual testing and deploys

• Becomes more and more used recently due to large scale development of 
cloud services and CI/CD automation pipelines that allow managing large 
number of applications. This was not feasible with manual deployment and 
bare-metal servers. 

• Each microservice is an individual application that exposes an API (usually 
REST) and its own encapsulated database. 

• Usually, microservices are build around business capabilities of the application 
(based on use-cases, actors, scenarios, etc.)



DSRL – Distributed Systems Research Laboratory

Microservice vs Monolith

• Choosing a system architecture is a trade-off

Monolith

DB

Micro 
Service

DB

Micro 
Service

DB

Micro 
Service

DB

High Low

Medium Medium

Low High

System Evolution (Predictability)

Development Cycle

Scalability



DSRL – Distributed Systems Research Laboratory

Advantages for using Microservices

• Finer-grained scalability: each service can be scaled-out according to the traffic 
on specific endpoints

• Increased testability: each service can be tested individually. 

• Fast changes on functionality: Changes on one service have little impact on 
other service

• Fast deployment: each service can be deployed individually without impacting 
other service deployments.

• Maintenance and reliability: each service can be maintained individually. If one 
service crashes, it should not affect other running service. 



DSRL – Distributed Systems Research Laboratory

Disadvantages for using Microservices

• Achieving Data Consistency: each microservice has its own database, BUT 
often one microservice needs data from other services (otherwise they would 
be completely different applications)

• How can consistency be achieved? What kind of consistency can we achieve?

• What about CAP theorem?

Micro 
Service

DB

Micro 
Service

DB

Micro 
Service

DB??? ???

How can data changes be 
propagated between various 
databases?



DSRL – Distributed Systems Research Laboratory

Achieving Data Consistency

• Use one database for all microservices => NOT MICROSERVICE ARCHITECTURE!

• Duplicate some of the data and expose APIs for each microservice to be called 
by other services when data is changes (synchronous change in two databases)

• Event-driven architecture: publish changes in Message-Oriented-Middleware 
(e.g. message queues, topics). Microservice Components listen to changes and 
update data accordingly.

• Advanced techniques:
• Distributed transactions (SAGA)

• CDC Systems (change data capture systems)



DSRL – Distributed Systems Research Laboratory

Achieving Data Consistency

• Duplicate some of the data and expose APIs for each microservice to be called 
by other services when data is changes (synchronous change in two databases)

Micro 
Service

A

DB A

Micro 
Service

B

DB B

1

4

2

3

1 Microservice A receives a 
request to update a field from 
DB A. The value is also 
duplicated in DB B

 Microservice A implements as a 
transaction the following steps:

• 2 call API in Microservice B

• 3 Microservice B updates DB B

• 4 On success, Microservice A 
updates DB A

• If any of the steps 2,3, or 4 
fails, the changes to either DB 
A or DB B are rolled back

• Achieves strong consistency at the cost of 
high coupling



DSRL – Distributed Systems Research Laboratory

Achieving Data Consistency
• Event-driven architecture: publish changes in Message-Oriented-Middleware 

(e.g. message queues, topics). Microservice Components listen to changes and 
update data accordingly.

Micro 
Service

A

DB A

Micro 
Service

B

DB B

3

1

5

Topic

42

1 Microservice A receives a request 
to update a field from DB A. The 
value is also duplicated in DB B

 Microservice A implements as a 
transaction the following steps:

• 2 Update DB A

• 3 Publish change to Topic

Microservice B listens to the topic:

• 4 Message consumer takes 
message with change

• 5 Update DB B

If any of the steps 3,4 or 5 fails, 
then DB A and DB B will not be 
consistent

• Achieves weak/eventual consistency BUT has 
low coupling between components



DSRL – Distributed Systems Research Laboratory

Achieving Data Consistency
• Event – based architecture can work with:

• Point-to-Point Communication (Queue-based) – changes sent to one service
• Publish-Subscribe (Topic-Based) – changes sent to multiple services

Micro 
Service

A

DB A

Micro 
Service

B

DB B

3

1

5

Topic

42

Micro 
Service

C

DB C
4

6



DSRL – Distributed Systems Research Laboratory

Achieving Data Consistency

• Advanced techniques:
• Distributed transactions (SAGA) – https://microservices.io/patterns/data/saga.html 

• A saga is a sequence of local transactions that updates the DBs and publishes events to start the 
subsequent local transaction in the saga. 

• If a transaction fails => the saga executes compensating transactions => undo the changes that were 
made by the preceding local transactions.

• CDC Systems (change data capture systems)
• Trail the databases log files (e.g. the binlog in MySQL) and publish corresponding events for each 

INSERT, UPDATE and DELETE. 

• E.g.  Debezium – has connectors for MySQL, Postgres, MongoDB etc. It can be used with Apache 
Kafka

https://microservices.io/patterns/data/saga.html
http://debezium.io/


DSRL – Distributed Systems Research Laboratory

References

• https://en.wikipedia.org/wiki/Microservices
• https://microservices.io/
• https://softwareengineering.stackexchange.com/questions/373927/what-is-the-

proper-way-to-synchronize-data-across-microservices
• https://microservices.io/patterns/data/saga.html
• https://stackoverflow.com/questions/37915326/how-to-keep-db-in-sync-when-using-

microservices-architecture
• https://medium.com/@semrush_official/how-to-sync-data-between-different-

databases-35c460f4ee63
• https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-

microservice-container-applications/distributed-data-management
• https://github.com/dotnet-architecture/eShopOnContainers
• https://dev.to/koenighotze/dealing-with-data-in-microservice-architectures-part-3-

replication-4h7b

https://en.wikipedia.org/wiki/Microservices
https://microservices.io/
https://softwareengineering.stackexchange.com/questions/373927/what-is-the-proper-way-to-synchronize-data-across-microservices
https://softwareengineering.stackexchange.com/questions/373927/what-is-the-proper-way-to-synchronize-data-across-microservices
https://microservices.io/patterns/data/saga.html
https://stackoverflow.com/questions/37915326/how-to-keep-db-in-sync-when-using-microservices-architecture
https://stackoverflow.com/questions/37915326/how-to-keep-db-in-sync-when-using-microservices-architecture
https://medium.com/@semrush_official/how-to-sync-data-between-different-databases-35c460f4ee63
https://medium.com/@semrush_official/how-to-sync-data-between-different-databases-35c460f4ee63
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/distributed-data-management
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/distributed-data-management
https://github.com/dotnet-architecture/eShopOnContainers
https://dev.to/koenighotze/dealing-with-data-in-microservice-architectures-part-3-replication-4h7b
https://dev.to/koenighotze/dealing-with-data-in-microservice-architectures-part-3-replication-4h7b

	Slide 1:   Microservices Architecture  Data consistency techniques 
	Slide 2: Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: References

